zondag 18 december 2011

Flocculent spiral NGC 2841


Bron: http://spacetelescope.org/news/heic1104/

Standing out from the Crowd.


The compact nature of globular clusters is a double-edged sword. On the one hand, having so many stars of a similar age in one bundle gives astronomers insights into the chemical makeup of our galaxy in its early history. But, at the same time, the high density of stars in the cores of globulars also makes it difficult for astronomers to resolve individual stars.
The core of NGC 6642, shown here in this Hubble Space Telescope image, is particularly dense, making this globular a difficult observational target for most telescopes. Furthermore, it occupies a very central position in our galaxy, which means that images inadvertently capture many stars that don’t belong to the cluster — these “field stars” just get in the way.
However, using Hubble’s powerful Advanced Camera for Surveys (ACS), astronomers can identify and remove such distracting field stars, and resolve the cluster’s dense core in unprecedented detail. Using Hubble’s ACS, astronomers have already made many interesting finds about NGC 6642. For example, many “blue stragglers” (stars which seemingly lag behind in their rate of aging) have been spotted in this globular, and it is known to be lacking in low-mass stars.
This picture was created from visible and infrared images taken with the Wide Field Channel of the Advanced Camera for Surveys. The field of view is approximately 1.6 by 1.6 arcminutes.

Credit:
ESA/Hubble & NASA

woensdag 7 december 2011

‘Deeltjes reizen sneller dan het licht’

Het deeltjeslab CERN in Genève heeft de wetenschappelijke wereld op zijn grondvesten doen schudden. Een Italiaanse studie suggereert dat neutrino’s sneller kunnen bewegen dan het licht. Neutrino’s zijn vrijwel massaloze deeltjes. In het spraakmakende Opera-experiment worden in CERN zogeheten muonneutrino’s gecreëerd. Zij vliegen dwars door de aarde over een afstand van 730 kilometer naar een detector in het ondergrondse lab in Gran Sasso.

Mocht het resultaat uit het Opera-experiment werkelijk kloppen, is daarmee de relativiteitstheorie van Albert Einstein in één klap omvergeblazen. Tevens zou het in theorie mogelijk zijn om terug in de tijd te reizen.
Deel deze gallery op Facebook.

Bron: http://nieuws.nl.msn.com/gallery-section/tijdreizen-mogelijk

maandag 21 november 2011

Wetenschappers halen licht uit ‘niets’

Onderzoekers hebben aangetoond dat het mogelijk is om iets uit ‘niets’ te halen: ze haalden energie uit een lege ruimte.
Iets uit niets halen. Kan dat? Jawel, zolang u maar ontzettend snel beweegt. 41 jaar geleden voorspelden onderzoekers al dat dit alles mogelijk was. Nu hebben wetenschappers het ook aangetoond.
Niet leeg
Niets bestaat namelijk eigenlijk niet. Lege ruimte is niet leeg. In lege ruimte bevinden zich deeltjes die zijn en dan weer niet zijn. Zelfs een vacuüm vertoont hele kleine fluctuaties in energie.
WIST U DAT?
Spiegels
Dat is al eens aangetoond met twee spiegels die op een kleine afstand tot elkaar in een vacuüm werden gezet. Deze spiegels werden dan naar elkaar toegetrokken, omdat in de kleine ruimte tussen de spiegels minder deeltjes (fotonen in dit geval) zaten dan elders rondom de spiegels. De druk aan de buitenzijde was dan ook groter dan tussen de spiegels en hierdoor worden de spiegels tegen elkaar aangedrukt. Het bewijs dat er energie is in een vacuüm.
Fotonen
Onderzoekers zijn nu echter nog een stap verder gegaan, zo is in het blad Nature te lezen. Ze hebben energie uit zo’n vacuüm gehaald. “Het was een heel moeilijk technisch experiment,” moet onderzoeker Chris Wilson bekennen. “We waren heel blij toen het gelukt was.”
Voor het experiment was maar één spiegel nodig. Deze moest met de snelheid van het licht reizen. De bewegingsenergie wordt dan geabsorbeerd door de fotonen en zij geven die energie weer af door paren echte fotonen te vormen. De onderzoekers gebruikten geen spiegel voor hun experiment, maar maakten gebruik van een supergeleidend elektrisch circuit met een oscillator die de afstand die een elektron door het circuit moet afleggen heel snel kon veranderen. De onderzoeker lieten de elektron heel snel reizen (met ongeveer een kwart van de snelheid van het licht) en dat was snel genoeg om bewegingsenergie over te brengen op fotonen. “Deeltjes werden in paren geproduceerd en kwamen direct uit het vacuüm,” vertelt Wilson. En dat is toch wel een doorbraak: mogelijk kan het onderzoekers helpen om een beter beeld te krijgen van donkere energie. Onderzoekers vermoeden namelijk dat donkere energie mede mogelijk wordt gemaakt door de energie van virtuele fotonen.
Geschreven door Caroline Hoek op 21 november 2011 om 11:56 uur

donderdag 27 januari 2011

Hubble ziet extreem ver sterrenstelsel in piepjong heelal


Astronomen hebben met ruimtetelescoop Hubble een sterrenstelsel gevonden dat 480 miljoen jaar na de oerknal al bestond.
Daarmee is het stelsel het verst van ons verwijderde en het vroegst ontstane sterrenstelsel dat we tot nu toe hebben waargenomen. Bijzonder is echter vooral dat het om maar één stelsel gaat. Op basis van eerdere waarnemingen zou je er namelijk minstens een paar verwachten.
Waar het bij dit onderzoek om draait, is de vraag wanneer de eerste sterrenstelsels in ons inmiddels 13,7 miljard jaar oude heelal ontstonden. Om die te beantwoorden, is het van belang om voor allerlei verschillende tijdstippen na de oerknal het aantal stelsels te ‘turven’. Hoeveel sterrenstelsels waren er één miljard jaar na de oerknal? Hoeveel 750 miljoen jaar na de oerknal? Enzovoort.
Een beperking daarbij is dat hoe verder je het verleden in wilt gaan, hoe dieper je het heelal in moet kijken. Dat is een gevolg van het gegeven dat licht tijd nodig heeft om afstanden te overbruggen. Zo heeft zonlicht acht minuten nodig om de aarde te bereiken, met als gevolg dat we de zon zien zoals hij acht minuten geleden was. Kijken we naar de veel verder weg gelegen sterren aan de nachtelijke hemel, dan zien we die zoals ze jaren geleden waren. En willen we het heelal zien zoals het enkele honderden miljoenen jaren na de oerknal was, dan moeten we nóg veel verder kijken; zo ver als nodig is om ervoor te zorgen dat licht dat in de gewenste periode werd uitgezonden ons nu bereikt.
Sterrenkundige Rychard Bouwens van de Universiteit Leiden en collega’s hebben dat laatste gedaan, voor het tijdstip van 480 miljoen jaar na de oerknal. Daartoe lieten ze de Hubble Space Telescope met een in mei 2009 geïnstalleerde infraroodcamera 87 uur naar hetzelfde plekje aan de hemel turen. De reden daarvoor: het gaat hier om objecten op zulke grote afstanden, dat je een extreem lange belichtingstijd nodig hebt om er nog íéts van te kunnen zien. De oogst van deze onderneming, zoals gezegd: één enkel sterrenstelsel. (Tenminste, daar lijkt het op; er is een geschatte kans van 20 procent dat we met iets anders te maken hebben.)
Wat deze vondst interessant maakt, is dat eerdere waarnemingen van 630 miljoen jaar na de oerknal enkele tientallen sterrenstelsels aan het licht brachten, terwijl er voor de periode van 900 tot 1200 miljoen jaar na de oerknal zelfs enkele duizenden zijn gevonden. Oftewel: hoe langer na de oerknal, hoe meer sterrenstelsels. Logisch ook; toen het heelal ontstond, waren er geen sterrenstelsels, enkele miljarden jaren later waren er talloze; in de tussentijd moeten ze dus stukje bij beetje zijn ontstaan. Maar trek je die trend door naar het verleden, dan zou je bij 480 miljoen jaar na de oerknal op zijn minst een paar sterrenstelsels verwachten – niet ééntje-of-misschien-zelfs-geen.
De conclusie die we uit dit gebrek aan sterrenstelsels kunnen trekken: in de periode van 480 miljoen jaar na de oerknal tot enkele honderden miljoenen jaren later ontstonden sterrenstelsels rapper dan verwacht. En: het stelsel dat Bouwens en collega’s hebben gevonden, zou weleens een van de eerste exemplaren van ons heelal kunnen zijn.
Bronnen: NatureAstronomie.nl
Beeld: G. Illingworth/R. Bouwens/HUDF09 Team/ESA/NASA

How to land humans on an asteroid

AENEA mission patch
AENEA mission patch

 
25 January 2011
After a year of intensive studies, young engineers from Europe faced an unusual but challenging task on the future space exploration: can you safely transport humans to a near-Earth asteroid in an international endeavour?

The virtual mission was called AENEA – Human Exploration of a Near Earth Asteroid – and it came to completion last week during the fifth international Master SEEDS (Space Exploration and Development Systems) event at ESTEC, in Noordwijk, The Netherlands.
ESA supported this academic course to educate young engineers for industries that wish to establish their role in the international space arena.
The day before their presentations, the pupils had the opportunity to visit many of the ESTEC facilities and found the state-of-the-art Concurrent Design Facility particularly relevant to their mission design.  

Their presentations was preceded with an overview of ESA exploration activities – the Lunar Lander, Advanced Reentry Vehicle and Expert – by the head of Transportation and Exploration, Bruno Gardini.
ESA astronaut Frank De Winne, the first European commander of the International Space Station, also took to the stage and presented a well-received overview of his OasISS mission.
It was not an easy task to design a mission to transport humans safely to a near-Earth asteroid, performing extravehicular activities on its surface, scientific experiments and technological tests to extend the scientific knowledge and capabilities in space exploration and utilisation.
“The students have matured over the one-year period and developed a professional capability to handle engineering problems with a system mind”, said the SEEDS Educational Project Manager, Prof. Ernesto Vallerani.
“Now they are prepared to enter the industrial world with specific competences, engaged in advance space activities.”
 


AENEA presentation ceremony
AENEA presentation ceremony
A multisite study

A number of elements were identified and developed to accomplish AENEA’s overall mission requirements. A few of the elements were studied in detail: mission analysis, robotic system, communications, guidance navigation control, heavy launch vehicles, transportation modules, reaction control cystems and crew habitation systems.
Work on this mission design was performed in each of the three locations (Germany, France and Italy) under the close supervision of their professors and experts from industry as well as academia.
The type of work the students performed was equivalent to pre-Phase-A, leading to the definition of a space infrastructure to support the exploration mission objectives.
 

For the duration of their studies, the students attended preparatory courses in Torino: “Understanding Space: Introduction to Space basic Concepts” and “Learning Space Systems: Fundamentals of Space Engineering”. They undertook an intensive period of preliminary design and subsequently engaged in six months of project work in Toulouse, Bremen and Torino.
Thanks to this course, young and enthusiastic people from Europe have found a role in the international space exploration initiative. Their reinforced engineering skills are needed to develop the space systems and to follow in the footsteps of their older colleagues.
Video feed of the presentation can be seen here.
 bron: esa

woensdag 5 januari 2011

New material blocks light from exhibiting diffraction.



I admit this failing: I am an optics geek, and all things light-related tend to get me... um... excited. But arecent paper in Nature Photonics presented a result that most people will find very startling: researchers have created a material which prevents light from exhibiting diffraction.
Some of you with experience in optics may be thinking that this is nothing special, because you have heard of solitons. For those of you who haven't heard of solitons, let me introduce you to them and then explain why this is not a typical soliton.
The sort of spatial soliton that most people refer to involves a wave that compensates for its own diffraction. The way this works is that the laser light has an intensity profile that is most intense near the center and least intense in the wings. If you send it through a material that is nonlinear, it will face a refractive index that will depend on the light intensity. The result is that the light creates a lens as it moves. The lens focuses the light while the natural diffraction of the light beam causes it to expand. At the right intensity, the two balance out and the light beam continues to move through the material without expanding.
But the size of the light beam that you put into the material is not the same as the light beam that you get out, since it will contract to some diameter that allows the focusing effect to balance diffraction. This size depends on how bright the light field is as well. A bright light field will contract to a smaller diameter than a weaker light field.
How does this differ from the research in the Nature Photonics paper? In the new material that the researchers made, there is no mechanism by which the diffraction is compensated. Instead, the material simply doesn't allow diffraction to occur—we will get to how this occurs later—meaning that the light field can't expand or contract. Indeed, what you put in is exactly what you get out, independent of the light intensity, making this very different from a normal soliton.
Now we get to the difficult part: how does this come about? The material consists of potassium, tantalum, and niobate, along with some impurities of copper and lithium. As the material cools after it is mixed, it creates a bunch of different regions that have slightly different arrangements in their crystalline structure, resulting in nanometer sized regions that have slightly different linear and nonlinear optical responses. The size and order of these regions depends on how fast the mix is cooled, so with some experimentation, the researchers can control the nonlinear optical properties of the material.
The end result is that, for some cooling rates, the researchers create a material that doesn't have any of the expected self focusing because the nonlinear properties vary on too fine a scale. Instead, the way the refractive index changes depends on how fast the brightness of the laser beam changes as we move out from the center of the laser beam—a property referred to as the gradient. Usually, this is very weak, but the random and very fine structure of the ceramic allows this gradient effect to dominate.
The critical thing about the gradient is that, for all normal laser beams, it is independent of the maximum intensity of the laser beam. So, it doesn't matter how intense the laser beam is, it will always form a spatial soliton that is exactly like the input beam.
The question then becomes: what do we use it for? I am not sure that the authors of the paper have a clear idea about this either. They mention possibilities for imaging, because if you focus the light at the entrance of the material, it is still focused on exiting, but I'm not quite sure how this would help. Nevertheless, it is a very cool development, and I suspect that applications will follow.
Nature Photonics, 2011
Met dank aan lucas pellens en http://www.aquilalommel.tk/

zondag 2 januari 2011

Over de ISS...


Op 15 december 20:09 uur zal om 19:09 GMT (16 december om 01:09 Baikonur tijd), ESA-astronaut Paolo Nespoli vliegen op een Sojoez naar het internationale ruimtestation (ISS) voor een zes maanden durende missie. Het ISS is nu voltooid en ongeveer 50% van het ISS onder druk modules zijn 'made in Europe'. Dit verhaal geeft de huidige status van onze internationale buitenpost op de baan. Meer achtergrond informatie is te vinden op: http://www.esa.int/esaHS/iss.html